天人合一是什么意思| 鱼油有什么功效| 多喝水有什么好处坏处| 梅毒检查什么项目| 鸡的五行属什么| 中秋节送礼送什么| 阴毛变白什么原因| 益生菌治什么病| 尿蛋白高是什么原因| 胃痉挛是什么| 后背长痘是什么原因| 心包填塞三联征是什么| 通便吃什么药最快| 李子吃多了有什么坏处| 推拿和按摩有什么区别| 吃粽子是什么节日| 砚字五行属什么| 壬是什么意思| 天门冬氨酸氨基转移酶是什么| 湿疹和荨麻疹有什么区别| 淋巴门消失是什么意思| 感冒喝什么粥| 96166是什么电话| 女人吃牛油果有什么好处| 蜕膜是什么| 南屏晚钟什么意思| 婴儿血小板低是什么原因| 更年期什么时候| 倾注是什么意思| 猪下水是什么| 鱼完念什么| 日单是什么意思| 肿瘤吃什么药可以消除| 什么饮料好喝| 尿素高不能吃什么| 你最想做什么| 遗传代谢病是什么意思| 表哥的儿子叫我什么| 一路长虹什么意思| 眼白发红是什么原因| 副总经理是什么级别| 什么牌子的点读机好| 微创手术是什么意思| 尿路结石吃什么药| 热得像什么| 本番是什么意思| 一见什么| 为什么井盖是圆的| 右侧卵巢囊性结构是什么意思| 暴饮暴食容易得什么病| 龙凤呈祥是什么生肖| 阴茎插入阴道是什么感觉| 八月十日是什么星座| 喝什么能变白| 女的什么时候退休| 小孩咳嗽喝什么药| 龙头龟身是什么神兽| 玄府指的是什么| 什么万| 猴的守护神是什么菩萨| 人心叵测什么意思| 子宫前位什么姿势易孕| 蜂蜜水什么时候喝比较好| 老人吃饭老是噎着是什么原因| 左侧卵巢无回声是什么意思| 肿瘤是什么病| 鼻子旁边的痣代表什么| 嗫嚅是什么意思| 腰椎生理曲度变直是什么意思| 把你的心我的心串一串是什么歌| 柬埔寨是什么国家| 梦见自己生了个儿子是什么意思| 崖柏对人体有什么好处| 食人鱼长什么样子| 可乐煮姜有什么作用| 左后背发麻是什么原因| 生理期为什么会肚子疼| 升结肠管状腺瘤是什么意思| 肛周瘙痒用什么药| 木糖醇是什么东西| 病毒性感冒什么症状| 口下面一个巴念什么| pa是什么意思| 吃什么可以降尿酸| 月经老是推迟是什么原因| 葡萄糖升高说明什么| 府绸是什么面料| 本卦和变卦是什么关系| 脚底烧热是什么原因| soeasy是什么意思| 喝酸奶有什么好处| 宽慰是什么意思| 胃痛吃什么食物| 胃低分化腺癌是什么意思| 十二月二十三是什么星座| 白芨有什么作用和功效| 活泼的反义词是什么| 长痘吃什么水果| 娃哈哈纯净水是什么水| 跳蛛吃什么| 口干口苦吃什么药好| 梦见别人死了是什么预兆| 褪黑素什么时候吃| 6月29号是什么星座| 掉头发是什么原因女性| 老人不睡觉是什么预兆| 鱼缸底部铺什么好| 胃炎吃什么食物好| 织锦是什么面料| b型血为什么招蚊子| 质数是什么| 散光是什么症状| 开天门是什么意思| 拉直和软化有什么区别| 11月什么星座| 一语道破什么意思| 货号是什么| 一年四季穿棉衣是什么生肖| 无名指长代表什么| 8月15号是什么日子| 两癌筛查主要查什么| 脚酸是什么原因| 知青为什么要下乡| 阴虚火旺吃什么中成药好| 举人相当于什么官| 思是什么生肖| 金丝熊吃什么| hbalc是什么意思| 不现实什么意思| 缓刑是什么意思还要坐牢吗| 鼻子和嘴巴连接的地方叫什么| 麻头是什么| 泌尿系统感染什么症状| 金字旁加全字念什么| 囟门闭合早有什么影响| 月经过后腰酸疼是什么原因| 平光镜是什么意思| 吃什么水果能壮阳| 什么是托特包| rca是什么意思| 为什么会肾结石| 逻辑性是什么意思| 陈旧性心梗是什么意思| 六十岁是什么之年| 尿道炎症状吃什么药| 2月15是什么星座| 血光之灾是什么意思| 张姓为什么出不了皇帝| 什么食物含铅| 吃什么药去体内湿气| 洛阳古代叫什么| 九宫是什么意思| 肉苁蓉是什么| 盼头是什么意思| 做梦抓鱼什么意思周公解梦| 大熊猫生活在什么地方| 每天吃黄瓜有什么好处| 孕妇建档是什么意思| 容易出汗什么原因| 婴儿游泳有什么好处和坏处| 开铲车需要什么证件| 丝绦是什么意思| 闺蜜什么意思| 潮热是什么症状| 肛门下坠感是什么症状| 人体消化道中最长的器官是什么| 肠胃炎吃什么食物好| 阴囊湿疹用什么药效果最好| 最难写的字是什么| qs排名是什么意思| 孕妇晚上饿了吃什么好| 桑葚什么季节成熟| 铂字五行属什么| 额头窄适合什么发型| 胡萝卜含有什么维生素| 三色线分别代表什么| 一吃就吐是什么病症| 缺镁吃什么食物补充最快| 什么是气虚| 头晕目眩是什么病的征兆| 凤凰单丛茶属于什么茶| Zucchini是什么意思| 2型糖尿病是什么意思| 什么叫碳水化合物| 黄体破裂是什么| 膀胱在什么位置图片| 扁桃体炎吃什么药最好效果好| 穹窿是什么意思| 麦冬有什么作用| 42天产后检查挂什么科| pd950是什么金| 第三代身份证什么时候开始办理| 治甲沟炎用什么药膏好| 吃什么水果好| 80岁是什么之年| 肌肉劳损吃什么药| 广州有什么山| 经常做梦是什么原因| 兵马俑是什么意思| 什么叫咳嗽变异性哮喘| 多吃蔬菜有什么好处| 脑卒中是什么意思| 鹿晗什么时候回国的| 胃疼需要做什么检查| 士加一笔是什么字| 寻常疣是什么原因造成的| 二聚体测定是什么| 糖尿病为什么治不好| 鸭胗是什么器官| 左肾积水有什么症状| 长痘痘擦什么药膏好| 身体缺硒有什么症状| 上吐下泻是什么原因| 49岁属什么| 彩云之南是什么意思| 小丑什么意思| 今天美国什么节日| 实属什么意思| 荷花是什么季节开放的| 胸口痛吃什么药| 属蛇和什么属相相冲| 尿频尿多是什么原因| 玩手机头疼是什么原因| 属猴的什么命| 宫颈纳氏囊肿是什么意思严重吗| 医生为什么喜欢开地塞米松| 木是什么意思| 牙齿最多的动物是什么| 白茶属于什么茶类| 今年什么时候进伏天| 蒲地蓝消炎片治什么病| 急性肠胃炎吃什么药| 炒菜用什么油好吃又健康| 什么叫通勤| 白细胞多是什么意思| npc是什么意思| wdf是什么意思| 嘴唇干是什么原因引起的| 什么都没有| 近义词是什么意思| 舌尖疼吃什么药| 乙巳年是什么命| 掉以轻心是什么意思| 握手是什么意思| 为什么会得梅毒| 乙肝15阳性是什么意思| 8月9号是什么星座| 为什么会有痔疮| 天目湖白茶属于什么茶| 流水生财是什么意思| 丹凤眼是什么样的| 开理疗店需要什么证件| 清宫后需要注意什么| 脑供血不足是什么原因| 骑驴找马是什么意思| 下贱是什么意思| 晚上尿多什么原因| 波比跳是什么| 下头是什么意思| 硫酸镁注射有什么作用| 什么是命中注定| 脚转筋是什么原因| 2005年什么年| 姿态是什么意思| 百度Jump to content

海带和什么菜搭配好吃

From Wikipedia, the free encyclopedia
百度 美国的最新贸易保护举措已在美国国内,以及国际社会引发广泛反对。

Digital signal processing (DSP) is the use of digital processing, such as by computers or more specialized digital signal processors, to perform a wide variety of signal processing operations. The digital signals processed in this manner are a sequence of numbers that represent samples of a continuous variable in a domain such as time, space, or frequency. In digital electronics, a digital signal is represented as a pulse train,[1][2] which is typically generated by the switching of a transistor.[3]

Digital signal processing and analog signal processing are subfields of signal processing. DSP applications include audio and speech processing, sonar, radar and other sensor array processing, spectral density estimation, statistical signal processing, digital image processing, data compression, video coding, audio coding, image compression, signal processing for telecommunications, control systems, biomedical engineering, and seismology, among others.

DSP can involve linear or nonlinear operations. Nonlinear signal processing is closely related to nonlinear system identification[4] and can be implemented in the time, frequency, and spatio-temporal domains.

The application of digital computation to signal processing allows for many advantages over analog processing in many applications, such as error detection and correction in transmission as well as data compression.[5] Digital signal processing is also fundamental to digital technology, such as digital telecommunication and wireless communications.[6] DSP is applicable to both streaming data and static (stored) data.

Signal sampling

[edit]

To digitally analyze and manipulate an analog signal, it must be digitized with an analog-to-digital converter (ADC).[7] Sampling is usually carried out in two stages, discretization and quantization. Discretization means that the signal is divided into equal intervals of time, and each interval is represented by a single measurement of amplitude. Quantization means each amplitude measurement is approximated by a value from a finite set. Rounding real numbers to integers is an example.

The Nyquist–Shannon sampling theorem states that a signal can be exactly reconstructed from its samples if the sampling frequency is greater than twice the highest frequency component in the signal. In practice, the sampling frequency is often significantly higher than this.[8] It is common to use an anti-aliasing filter to limit the signal bandwidth to comply with the sampling theorem, however careful selection of this filter is required because the reconstructed signal will be the filtered signal plus residual aliasing from imperfect stop band rejection instead of the original (unfiltered) signal.

Theoretical DSP analyses and derivations are typically performed on discrete-time signal models with no amplitude inaccuracies (quantization error), created by the abstract process of sampling. Numerical methods require a quantized signal, such as those produced by an ADC. The processed result might be a frequency spectrum or a set of statistics. But often it is another quantized signal that is converted back to analog form by a digital-to-analog converter (DAC).

Domains

[edit]

DSP engineers usually study digital signals in one of the following domains: time domain (one-dimensional signals), spatial domain (multidimensional signals), frequency domain, and wavelet domains. They choose the domain in which to process a signal by making an informed assumption (or by trying different possibilities) as to which domain best represents the essential characteristics of the signal and the processing to be applied to it. A sequence of samples from a measuring device produces a temporal or spatial domain representation, whereas a discrete Fourier transform produces the frequency domain representation.

Time and space domains

[edit]

Time domain refers to the analysis of signals with respect to time. Similarly, space domain refers to the analysis of signals with respect to position, e.g., pixel location for the case of image processing.

The most common processing approach in the time or space domain is enhancement of the input signal through a method called filtering. Digital filtering generally consists of some linear transformation of a number of surrounding samples around the current sample of the input or output signal. The surrounding samples may be identified with respect to time or space. The output of a linear digital filter to any given input may be calculated by convolving the input signal with an impulse response.

Frequency domain

[edit]

Signals are converted from time or space domain to the frequency domain usually through use of the Fourier transform. The Fourier transform converts the time or space information to a magnitude and phase component of each frequency. With some applications, how the phase varies with frequency can be a significant consideration. Where phase is unimportant, often the Fourier transform is converted to the power spectrum, which is the magnitude of each frequency component squared.

The most common purpose for analysis of signals in the frequency domain is analysis of signal properties. The engineer can study the spectrum to determine which frequencies are present in the input signal and which are missing. Frequency domain analysis is also called spectrum- or spectral analysis.

Filtering, particularly in non-realtime work, can also be achieved in the frequency domain, applying the filter and then converting back to the time domain. This can be an efficient implementation and can give essentially any filter response, including excellent approximations to brickwall filters.

There are some commonly used frequency domain transformations. For example, the cepstrum converts a signal to the frequency domain through Fourier transform, takes the logarithm, then applies another Fourier transform. This emphasizes the harmonic structure of the original spectrum.

Z-plane analysis

[edit]

Digital filters come in both infinite impulse response (IIR) and finite impulse response (FIR) types. Whereas FIR filters are always stable, IIR filters have feedback loops that may become unstable and oscillate. The Z-transform provides a tool for analyzing stability issues of digital IIR filters. It is analogous to the Laplace transform, which is used to design and analyze analog IIR filters.

Autoregression analysis

[edit]

A signal is represented as linear combination of its previous samples. Coefficients of the combination are called autoregression coefficients. This method has higher frequency resolution and can process shorter signals compared to the Fourier transform.[9] Prony's method can be used to estimate phases, amplitudes, initial phases and decays of the components of signal.[10][9] Components are assumed to be complex decaying exponents.[10][9]

Time-frequency analysis

[edit]

A time-frequency representation of a signal can capture both temporal evolution and frequency structure of the signal. Temporal and frequency resolution are limited by the uncertainty principle and the tradeoff is adjusted by the width of the analysis window. Linear techniques such as Short-time Fourier transform, wavelet transform, filter bank,[11] non-linear (e.g., Wigner–Ville transform[10]) and autoregressive methods (e.g. segmented Prony method)[10][12][13] are used for representation of signal on the time-frequency plane. Non-linear and segmented Prony methods can provide higher resolution, but may produce undesirable artifacts. Time-frequency analysis is usually used for analysis of non-stationary signals. For example, methods of fundamental frequency estimation, such as RAPT and PEFAC[14] are based on windowed spectral analysis.

Wavelet

[edit]
An example of the 2D discrete wavelet transform that is used in JPEG2000. The original image is high-pass filtered, yielding the three large images, each describing local changes in brightness (details) in the original image. It is then low-pass filtered and downscaled, yielding an approximation image; this image is high-pass filtered to produce the three smaller detail images, and low-pass filtered to produce the final approximation image in the upper-left.

In numerical analysis and functional analysis, a discrete wavelet transform is any wavelet transform for which the wavelets are discretely sampled. As with other wavelet transforms, a key advantage it has over Fourier transforms is temporal resolution: it captures both frequency and location information. The accuracy of the joint time-frequency resolution is limited by the uncertainty principle of time-frequency.

Empirical mode decomposition

[edit]

Empirical mode decomposition is based on decomposition signal into intrinsic mode functions (IMFs). IMFs are quasi-harmonical oscillations that are extracted from the signal.[15]

Implementation

[edit]

DSP algorithms may be run on general-purpose computers[16] and digital signal processors.[17] DSP algorithms are also implemented on purpose-built hardware such as application-specific integrated circuit (ASICs).[18] Additional technologies for digital signal processing include more powerful general-purpose microprocessors, graphics processing units, field-programmable gate arrays (FPGAs), digital signal controllers (mostly for industrial applications such as motor control), and stream processors.[19]

For systems that do not have a real-time computing requirement and the signal data (either input or output) exists in data files, processing may be done economically with a general-purpose computer. This is essentially no different from any other data processing, except DSP mathematical techniques (such as the DCT and FFT) are used, and the sampled data is usually assumed to be uniformly sampled in time or space. An example of such an application is processing digital photographs with software such as Photoshop.

When the application requirement is real-time, DSP is often implemented using specialized or dedicated processors or microprocessors, sometimes using multiple processors or multiple processing cores. These may process data using fixed-point arithmetic or floating point. For more demanding applications FPGAs may be used.[20] For the most demanding applications or high-volume products, ASICs might be designed specifically for the application.

Parallel implementations of DSP algorithms, utilizing multi-core CPU and many-core GPU architectures, are developed to improve the performances in terms of latency of these algorithms.[21]

Native processing is done by the computer's CPU rather than by DSP or outboard processing, which is done by additional third-party DSP chips located on extension cards or external hardware boxes or racks. Many digital audio workstations such as Logic Pro, Cubase, Digital Performer and Pro Tools LE use native processing. Others, such as Pro Tools HD, Universal Audio's UAD-1 and TC Electronic's Powercore use DSP processing.

Applications

[edit]

General application areas for DSP include

Specific examples include speech coding and transmission in digital mobile phones, room correction of sound in hi-fi and sound reinforcement applications, analysis and control of industrial processes, medical imaging such as CAT scans and MRI, audio crossovers and equalization, digital synthesizers, and audio effects units.[22] DSP has been used in hearing aid technology since 1996, which allows for automatic directional microphones, complex digital noise reduction, and improved adjustment of the frequency response.[23]

Techniques

[edit]
[edit]

Further reading

[edit]
  • Ahmed, Nasir; Rao, Kamisetty Ramamohan (7 August 1975). "Orthogonal transforms for digital signal processing". ICASSP '76. IEEE International Conference on Acoustics, Speech, and Signal Processing. Vol. 1. New York: Springer-Verlag. pp. 136–140. doi:10.1109/ICASSP.1976.1170121. ISBN 978-3540065562. LCCN 73018912. OCLC 438821458. OL 22806004M. S2CID 10776771.
  • Jonathan M. Blackledge, Martin Turner: Digital Signal Processing: Mathematical and Computational Methods, Software Development and Applications, Horwood Publishing, ISBN 1-898563-48-9
  • James D. Broesch: Digital Signal Processing Demystified, Newnes, ISBN 1-878707-16-7
  • Dyer, Stephen A.; Harms, Brian K. (13 August 1993). "Digital Signal Processing". In Yovits, Marshall C. (ed.). Advances in Computers. Vol. 37. Academic Press. pp. 59–118. doi:10.1016/S0065-2458(08)60403-9. ISBN 978-0120121373. ISSN 0065-2458. LCCN 59015761. OCLC 858439915. OL 10070096M.
  • Paul M. Embree, Damon Danieli: C++ Algorithms for Digital Signal Processing, Prentice Hall, ISBN 0-13-179144-3
  • Hari Krishna Garg: Digital Signal Processing Algorithms, CRC Press, ISBN 0-8493-7178-3
  • P. Gaydecki: Foundations Of Digital Signal Processing: Theory, Algorithms And Hardware Design, Institution of Electrical Engineers, ISBN 0-85296-431-5
  • Ashfaq Khan: Digital Signal Processing Fundamentals, Charles River Media, ISBN 1-58450-281-9
  • Sen M. Kuo, Woon-Seng Gan: Digital Signal Processors: Architectures, Implementations, and Applications, Prentice Hall, ISBN 0-13-035214-4
  • Paul A. Lynn, Wolfgang Fuerst: Introductory Digital Signal Processing with Computer Applications, John Wiley & Sons, ISBN 0-471-97984-8
  • Richard G. Lyons: Understanding Digital Signal Processing, Prentice Hall, ISBN 0-13-108989-7
  • Vijay Madisetti, Douglas B. Williams: The Digital Signal Processing Handbook, CRC Press, ISBN 0-8493-8572-5
  • James H. McClellan, Ronald W. Schafer, Mark A. Yoder: Signal Processing First, Prentice Hall, ISBN 0-13-090999-8
  • Bernard Mulgrew, Peter Grant, John Thompson: Digital Signal Processing – Concepts and Applications, Palgrave Macmillan, ISBN 0-333-96356-3
  • Boaz Porat: A Course in Digital Signal Processing, Wiley, ISBN 0-471-14961-6
  • John G. Proakis, Dimitris Manolakis: Digital Signal Processing: Principles, Algorithms and Applications, 4th ed, Pearson, April 2006, ISBN 978-0131873742
  • John G. Proakis: A Self-Study Guide for Digital Signal Processing, Prentice Hall, ISBN 0-13-143239-7
  • Charles A. Schuler: Digital Signal Processing: A Hands-On Approach, McGraw-Hill, ISBN 0-07-829744-3
  • Doug Smith: Digital Signal Processing Technology: Essentials of the Communications Revolution, American Radio Relay League, ISBN 0-87259-819-5
  • Smith, Steven W. (2002). Digital Signal Processing: A Practical Guide for Engineers and Scientists. Newnes. ISBN 0-7506-7444-X.
  • Stein, Jonathan Yaakov (2025-08-05). Digital Signal Processing, a Computer Science Perspective. Wiley. ISBN 0-471-29546-9.
  • Stergiopoulos, Stergios (2000). Advanced Signal Processing Handbook: Theory and Implementation for Radar, Sonar, and Medical Imaging Real-Time Systems. CRC Press. ISBN 0-8493-3691-0.
  • Van De Vegte, Joyce (2001). Fundamentals of Digital Signal Processing. Prentice Hall. ISBN 0-13-016077-6.
  • Oppenheim, Alan V.; Schafer, Ronald W. (2001). Discrete-Time Signal Processing. Pearson. ISBN 1-292-02572-7.
  • Hayes, Monson H. Statistical digital signal processing and modeling. John Wiley & Sons, 2009. (with MATLAB scripts)

References

[edit]
  1. ^ B. SOMANATHAN NAIR (2002). Digital electronics and logic design. PHI Learning Pvt. Ltd. p. 289. ISBN 9788120319561. Digital signals are fixed-width pulses, which occupy only one of two levels of amplitude.
  2. ^ Joseph Migga Kizza (2005). Computer Network Security. Springer Science & Business Media. ISBN 9780387204734.
  3. ^ 2000 Solved Problems in Digital Electronics. Tata McGraw-Hill Education. 2005. p. 151. ISBN 978-0-07-058831-8.
  4. ^ Billings, Stephen A. (Sep 2013). Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains. UK: Wiley. ISBN 978-1-119-94359-4.
  5. ^ Broesch, James D.; Stranneby, Dag; Walker, William (2025-08-05). Digital Signal Processing: Instant access (1 ed.). Butterworth-Heinemann-Newnes. p. 3. ISBN 9780750689762.
  6. ^ Srivastava, Viranjay M.; Singh, Ghanshyam (2013). MOSFET Technologies for Double-Pole Four-Throw Radio-Frequency Switch. Springer Science & Business Media. p. 1. ISBN 9783319011653.
  7. ^ Walden, R. H. (1999). "Analog-to-digital converter survey and analysis". IEEE Journal on Selected Areas in Communications. 17 (4): 539–550. doi:10.1109/49.761034.
  8. ^ Candes, E. J.; Wakin, M. B. (2008). "An Introduction To Compressive Sampling". IEEE Signal Processing Magazine. 25 (2): 21–30. Bibcode:2008ISPM...25...21C. doi:10.1109/MSP.2007.914731. S2CID 1704522.
  9. ^ a b c Marple, S. Lawrence (2025-08-05). Digital Spectral Analysis: With Applications. Englewood Cliffs, N.J: Prentice Hall. ISBN 978-0-13-214149-9.
  10. ^ a b c d Ribeiro, M.P.; Ewins, D.J.; Robb, D.A. (2025-08-05). "Non-stationary analysis and noise filtering using a technique extended from the original Prony method". Mechanical Systems and Signal Processing. 17 (3): 533–549. Bibcode:2003MSSP...17..533R. doi:10.1006/mssp.2001.1399. ISSN 0888-3270. Retrieved 2025-08-05.
  11. ^ So, Stephen; Paliwal, Kuldip K. (2005). "Improved noise-robustness in distributed speech recognition via perceptually-weighted vector quantisation of filterbank energies". Ninth European Conference on Speech Communication and Technology.
  12. ^ Mitrofanov, Georgy; Priimenko, Viatcheslav (2025-08-05). "Prony Filtering of Seismic Data". Acta Geophysica. 63 (3): 652–678. Bibcode:2015AcGeo..63..652M. doi:10.1515/acgeo-2015-0012. ISSN 1895-6572. S2CID 130300729.
  13. ^ Mitrofanov, Georgy; Smolin, S. N.; Orlov, Yu. A.; Bespechnyy, V. N. (2020). "Prony decomposition and filtering". Geology and Mineral Resources of Siberia (2): 55–67. doi:10.20403/2078-0575-2020-2-55-67. ISSN 2078-0575. S2CID 226638723. Retrieved 2025-08-05.
  14. ^ Gonzalez, Sira; Brookes, Mike (February 2014). "PEFAC - A Pitch Estimation Algorithm Robust to High Levels of Noise". IEEE/ACM Transactions on Audio, Speech, and Language Processing. 22 (2): 518–530. doi:10.1109/TASLP.2013.2295918. ISSN 2329-9290. S2CID 13161793. Retrieved 2025-08-05.
  15. ^ Huang, N. E.; Shen, Z.; Long, S. R.; Wu, M. C.; Shih, H. H.; Zheng, Q.; Yen, N.-C.; Tung, C. C.; Liu, H. H. (2025-08-05). "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 454 (1971): 903–995. Bibcode:1998RSPSA.454..903H. doi:10.1098/rspa.1998.0193. ISSN 1364-5021. S2CID 1262186. Retrieved 2025-08-05.
  16. ^ Weipeng, Jiang; Zhiqiang, He; Ran, Duan; Xinglin, Wang (August 2012). "Major optimization methods for TD-LTE signal processing based on general purpose processor". 7th International Conference on Communications and Networking in China. pp. 797–801. doi:10.1109/ChinaCom.2012.6417593. ISBN 978-1-4673-2699-5. S2CID 17594911.
  17. ^ Zaynidinov, Hakimjon; Ibragimov, Sanjarbek; Tojiboyev, Gayrat; Nurmurodov, Javohir (2025-08-05). "Efficiency of Parallelization of Haar Fast Transform Algorithm in Dual-Core Digital Signal Processors". 2021 8th International Conference on Computer and Communication Engineering (ICCCE). IEEE. pp. 7–12. doi:10.1109/ICCCE50029.2021.9467190. ISBN 978-1-7281-1065-3. S2CID 236187914.
  18. ^ Lyakhov, P.A. (June 2023). "Area-Efficient digital filtering based on truncated multiply-accumulate units in residue number system 2 n - 1 , 2 n , 2 n + 1". Journal of King Saud University - Computer and Information Sciences. 35 (6): 101574. doi:10.1016/j.jksuci.2023.101574.
  19. ^ Stranneby, Dag; Walker, William (2004). Digital Signal Processing and Applications (2nd ed.). Elsevier. ISBN 0-7506-6344-8.
  20. ^ JPFix (2006). "FPGA-Based Image Processing Accelerator". Retrieved 2025-08-05.
  21. ^ Kapinchev, Konstantin; Bradu, Adrian; Podoleanu, Adrian (December 2019). "Parallel Approaches to Digital Signal Processing Algorithms with Applications in Medical Imaging". 2019 13th International Conference on Signal Processing and Communication Systems (ICSPCS) (PDF). pp. 1–7. doi:10.1109/ICSPCS47537.2019.9008720. ISBN 978-1-7281-2194-9. S2CID 211686462.
  22. ^ Rabiner, Lawrence R.; Gold, Bernard (1975). Theory and application of digital signal processing. Englewood Cliffs, NJ: Prentice-Hall, Inc. ISBN 978-0139141010.
  23. ^ Kerckhoff, Jessica; Listenberger, Jennifer; Valente, Michael (October 1, 2008). "Advances in hearing aid technology". Contemporary Issues in Communication Science and Disorders. 35: 102–112. doi:10.1044/cicsd_35_F_102.
圣杯是什么意思 油面是什么 能够握紧的就别放了是什么歌 evol是什么意思 村里入党需要什么条件
卡介苗为什么会留疤 肺阴虚吃什么中成药 九锡是什么意思 爸爸是什么意思 五福临门是什么生肖
月德合是什么意思 乔丹是什么牌子 补充免疫力吃什么好 梦见饺子是什么意思 错付是什么意思
三油甘脂是什么 依达拉奉注射功效与作用是什么 出家人不打诳语是什么意思 后脑勺发胀是什么原因 张国荣什么时候去世的
无可奈何的笑是什么笑hcv7jop9ns0r.cn 青光眼用什么眼药水hcv8jop0ns9r.cn 61年属什么生肖hcv9jop5ns6r.cn 什么心什么力hcv9jop2ns2r.cn 梦到自己快要死了是什么意思baiqunet.com
什么叫更年期hcv9jop3ns3r.cn 狗喜欢吃什么hcv8jop0ns5r.cn 诺贝尔为什么没有数学奖hcv8jop8ns0r.cn 菠萝蜜过敏什么症状hcv8jop7ns7r.cn 嘴巴里长血泡是什么原因hanqikai.com
ct挂什么科hcv8jop3ns9r.cn 屎黄色是什么颜色hcv9jop7ns3r.cn 月经和怀孕的症状有什么不同hcv9jop5ns5r.cn lee是什么品牌hcv7jop9ns3r.cn 劳动局全称叫什么hcv8jop2ns8r.cn
桑榆是什么意思jasonfriends.com 尿液有泡沫什么原因hcv8jop6ns5r.cn 炖牛肉放什么料hcv9jop7ns5r.cn 假菌丝是什么意思hcv9jop6ns3r.cn 化合物是什么hcv9jop1ns7r.cn
百度